(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(nil) → nil
rev(rev(z0)) → z0
rev(++(z0, z1)) → ++(rev(z1), rev(z0))
++(nil, z0) → z0
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(z0, ++(z1, z2)) → ++(++(z0, z1), z2)
make(z0) → .(z0, nil)
Tuples:
REV(++(z0, z1)) → c2(++'(rev(z1), rev(z0)), REV(z1), REV(z0))
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
S tuples:
REV(++(z0, z1)) → c2(++'(rev(z1), rev(z0)), REV(z1), REV(z0))
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
K tuples:none
Defined Rule Symbols:
rev, ++, make
Defined Pair Symbols:
REV, ++'
Compound Symbols:
c2, c5, c6
(3) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
REV(++(z0, z1)) → c2(++'(rev(z1), rev(z0)), REV(z1), REV(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(nil) → nil
rev(rev(z0)) → z0
rev(++(z0, z1)) → ++(rev(z1), rev(z0))
++(nil, z0) → z0
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(z0, ++(z1, z2)) → ++(++(z0, z1), z2)
make(z0) → .(z0, nil)
Tuples:
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
S tuples:
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
K tuples:none
Defined Rule Symbols:
rev, ++, make
Defined Pair Symbols:
++'
Compound Symbols:
c5, c6
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
We considered the (Usable) Rules:
++(nil, z0) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(z0, ++(z1, z2)) → ++(++(z0, z1), z2)
++(z0, nil) → z0
And the Tuples:
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(++(x1, x2)) = [2] + [4]x1 + x2
POL(++'(x1, x2)) = [2] + [4]x2
POL(.(x1, x2)) = [2]
POL(c5(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(nil) = 0
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(nil) → nil
rev(rev(z0)) → z0
rev(++(z0, z1)) → ++(rev(z1), rev(z0))
++(nil, z0) → z0
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(z0, ++(z1, z2)) → ++(++(z0, z1), z2)
make(z0) → .(z0, nil)
Tuples:
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
S tuples:
++'(.(z0, z1), z2) → c5(++'(z1, z2))
K tuples:
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
Defined Rule Symbols:
rev, ++, make
Defined Pair Symbols:
++'
Compound Symbols:
c5, c6
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
++'(.(z0, z1), z2) → c5(++'(z1, z2))
We considered the (Usable) Rules:
++(nil, z0) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(z0, ++(z1, z2)) → ++(++(z0, z1), z2)
++(z0, nil) → z0
And the Tuples:
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(++(x1, x2)) = [2] + x1 + [2]x2
POL(++'(x1, x2)) = x1 + [2]x22 + [2]x1·x2
POL(.(x1, x2)) = [2] + x2
POL(c5(x1)) = x1
POL(c6(x1, x2)) = x1 + x2
POL(nil) = 0
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
rev(nil) → nil
rev(rev(z0)) → z0
rev(++(z0, z1)) → ++(rev(z1), rev(z0))
++(nil, z0) → z0
++(z0, nil) → z0
++(.(z0, z1), z2) → .(z0, ++(z1, z2))
++(z0, ++(z1, z2)) → ++(++(z0, z1), z2)
make(z0) → .(z0, nil)
Tuples:
++'(.(z0, z1), z2) → c5(++'(z1, z2))
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
S tuples:none
K tuples:
++'(z0, ++(z1, z2)) → c6(++'(++(z0, z1), z2), ++'(z0, z1))
++'(.(z0, z1), z2) → c5(++'(z1, z2))
Defined Rule Symbols:
rev, ++, make
Defined Pair Symbols:
++'
Compound Symbols:
c5, c6
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))